Optional attentionOptional channelchannel multiples per down/up sampling stage
Optional contextOptional convif true use learnable convolutional upsampling/downsampling
Optional dimsdetermines whether to use 1D, 2D, or 3D convolutions
Optional dropoutthe dropout probability
Optional dtypechannels of input tensor
base channels in model
Optional numif specified, then this model will be class-conditioned with numClasses classes
Optional numif specified, ignore numHeads and instead use this number of channels in each attention head
Optional numthe number of attention heads in each attention layer
Optional numOptional numnumber of residual blocks per down/up sampling stage
channels of output tensor
Optional resblockuse residual blocks for up/down sampling
Optional transformerOptional useOptional useOptional useuse a FiLM-like conditioning mechanism
Optional useGenerated using TypeDoc
a collection of downsample rates at which attention is applied. For example, if this contains 4, then at 4x downsampling, attention is applied.